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Two-Flux Green's Function Analysis for Transient Spectral

Radiation in a Composite

Robert Siegel*

NASA Lewis Research Center, Cleveland, Ohio 44135

An analysis is developed for obtaining transient temperatures in a two-layer semitransparent composite

with spectrally dependent properties. Each external boundary of the composite is subjected to radiation
and convection. The two-flux radiative transfer equations are solved by deriving a Green's function. This

yields the local radiative heat source needed to numerically solve the transient energy equation. An

advantage of the two-flux method is that isotropic scattering is included without added complexity. The

layer refractive indices are larger than one. This produces internal reflections at the boundaries and the

internal interface; the reflections are assumed diffuse. Spectral results using the Green's function method

are verified by comparing with numerical solutions using the exact radiative transfer equations. Transient

temperature distributions are given to illustrate the effect of radiative heating on one side of a composite

with external convective cooling. The protection of a material from incident radiation is illustrated by

adding scattering to the layer adjacent to the radiative source.
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Nomenclature _,_, qr2

= spectral absorption coefficient of each layer, m -t qf, q7
= coefficients in Green's functions

= specific heat of each layer in the composite, RI-R6
J]kg- K

= speed of electromagnetic propagation in

vacuum, m/s

= heat capacity ratio of layers, p2c2/ptc_ T

= total thickness of composite, D_ + Dz, m Tgt, Tg2
= thickness of each layer in composite, m

= coefficients in homogeneous solution for T,
each layer

= blackbody spectral energy in vacuum divided T,], 7",2
by o-T_

= quantity in each layer, K:_(D/D:)[3(1 -- I_iv)] tp-

= flux quantity 2(q_ + + q_-), W/m2; tg_, tg2
= G/°'T4 x

= Green's function for G_ in each layer

= dimensionless parameters, h_lo-T_ and

h2/O'T3i 0

= convective heat transfer coefficients at x = 0 Kj_
and D, W/m2K v

= extinction coefficient of each layer, aj + O-sj, vcj

m -I _j

= thermal conductivity of each layer, W/m- K Pa-P/

= conduction-radiation parameter of each pj
layer based on D, k_/4crT3D o_

nj = refractive index of each layer cr_j_

P2,, P4_, P6_ = quantities P2_ = 2R2/3KI_D,

P4_ = 2R4/3K_D, Pr, = 2R6/3Kz_D _r

q, = radiative flux in the x direction, W/m2; _j_

_, = q,/o'T?

q,_, q,2 = external radiation fluxes o-T_l and 0"T,42
incident at x = 0 and D, W/m 2
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= dimensionless radiation fluxes, qrl/o'T_ and

qr2/O'T_

= radiative fluxes in positive and negative x

directions, W/m 2

= reflection coefficients, R_ = (1 -- p_)/(1 -- po),

R2 = (1 + po)/(1 -- po), R3 = (1 -- pc)/

(1 -- Pa), R4 = (Pc + pa)l(1 -- p,_), R5 =

(1 -- pf)/(1 -- ,o_), R6 = (1 + p.)/(1 -- p,.)

= absolute temperature, K; t = T/Tz

= gas temperatures for convection at x = 0 and

D,K

= reference temperature, or uniform initial

temperature, K

= temperatures of blackbody radiative

surroundings at x = 0 and D, K;

T,l = (q,l/cr) u', T,__ = (qr2]O') 1/4

= dimensionless gas temperatures, Te_/T¢, Tz,_IT_

= coordinate in direction across layer, m;
X=x/D

= dimensionless thickness of first layer, D_/D

= time, s

= optical thickness of each layer, (aj_ + c%JD:

= frequency of spectral radiation, s-

= cutoff frequency in each layer, s -_

= location within composite divided by D

= reflectivities at interfaces, Fig. 1

= density of each layer, kg/m 3
= Stefan-Boltzmann constant, W/m2K 4

= spectral scattering coefficient of each layer,
m-1

= dimensionless time, (4o-T_/p_c]D)O

= spectral scattering albedo of each layer,

O",.iv/(a)_ "1- O'.i_)

Subscripts
h = homogeneous solution

j = layer index, j = 1 in first layer, j = 2 in

second layer

Introduction

ETAILED transient temperatures are needed to examine
heat transfer and thermal stress behavior for materials at

high temperature that are partially transparent to thermal ra-

diation. Applications include ceramic components, thermal
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protectioncoatings,temperingof glass windows, high-temper-

ature insulation systems, and porous ceramic burners. For

semitransparent materials where thermal radiation affects in-

ternal temperatures, transients have been studied much less

than steady state.

For transient solutions, numerical procedures such as finite
differences and finite elements have been used to solve the

transient energy equation coupled with the radiative transfer
relations. Some of the literature is reviewed in Refs. 1-7,

and so a detailed review of transient solutions is not repeated

here. A few investigations of particular interest for the present

study provide analyses of composites with two or multiple

layersfl-tt In Ref. 8, the radiative transfer equations for ab-

sorbing layers with diffuse boundaries are solved numerically

in combination with the transient energy equation; scattering

is not included. A finite difference method is used in the spatial

direction, and a Runge-Kutta method is used to move forward

in time. A multilayered region with diffuse boundaries is con-

sidered in Ref. 9; scattering is not included. A finite difference

method is used with a variable grid size. A two-layer com-

posite is analyzed in Ref. 10 subjected to external radiation at

one of its boundaries. Isotropic scattering is included, and the

layers are gray. A Galerkin method is used to solve the radi-

ative transfer relations, coupled with a finite difference solution

of the transient energy equation.

The present analysis continues the development in Ref. 1 1

where a two-flux Green's function method was developed for

a two-layer gray composite; spectral properties are now in-

cluded. The two-flux approximation 12 is used for the spectral

radiative transfer equations. An advantage of the two-flux

method is that isotropic scattering is included without addi-

tional effort, as compared with the need to solve the scattering

integral equation at each time when using the exact transfer

relations. For the general boundary conditions of external con-

vection and radiation for a layer having diffuse interfaces, it

was shown in Refs. 13 and 14 that the two-flux method pro-

vides accurate temperature distributions and heat fluxes. This

was for steady state in single and composite layers with scat-

tering included. For transient behavior, the two-flux method

was shown to provide accurate results for a single layer, 3 and

for a two-layer gray composite. 21

In the present analysis, the Green's function solution H for

the two-flux differential equations is extended for spectral

property variations in a composite with general boundary con-
ditions. This solution for the local radiative heat source is com-

bined with an implicit finite difference solution of the transient

energy equation using a tridiagonal matrix. Results are ob-

tained to validate the numerical method and to illustrate some

aspects of transient behavior. They compare, for example, gray

and spectral calculations, and show how additional scattering

in one layer of a composite can alter the temperature distri-

bution in an adjacent layer. The solution can be applied to

examine many transient effects in a two-layer composite with

spectral properties.

Analysis

The analysis is for a plane two-layer composite, Fig. 1, that

has different spectral radiative absorption and scattering prop-

erties in each layer. The layers are semitransparent absorbing

dielectrics with refractive indices larger than one. There is heat

conduction and isotropic scattering in each layer. The external

boundaries and the interface between the layers are assumed
diffuse. The diffuse surface reflectivities are determined from

the n_ using the Fresnel equations; since the nj are assumed

independent of _,. the reflectivities do not depend on frequency.

Initially, the composite has a temperature distribution T(x, 0),

and Ti is a characteristic temperature of T(x, 0) used for di-

mensionless quantities. To begin a transient, the composite is

subjected to surroundings so that each boundary can receive
or lose radiant energy, and is in contact with a convecting gas.

Transient temperature distributions are obtained until steady

n=l

Tgl

hi

q_(_)

Tsl pa_X,

Layer 1

"1, ol(v), '_=1(v)
kl,Pl, cl

IniJia:

q+(x,e._

qr(x,e,v)

rDb Pe'-_

X=0

Pd

T(X,O)

D

x:D 1

Layer 2

_2.o_(v),_=2(v)
k2, P2, c2

r(x,0)

Pe_

D2 --------_

x=D

n=l

Tg2

h2

-------- q,2(v)

_-pf Ts2

Fig. 1 Geometry and nomenclature for transient radiation and
conduction in a two-layer semitransparent composite with spec-
trally dependent properties and isotropic scattering.

state is reached, corresponding to the imposed external con-
ditions.

Energy Equation and Two-Flux Relations

for a Two-Layer Composite

The dimensionless energy equation for transient tempera-

tures in each layer is 3

at(x, r) o'-t(X, r) 1 o_,(x, "r)

0¢ - NI aX z 4 aX 0 -----X < 6 (la)

Ot(X, 7) N2 02t(X, 7) 10_,(X, _')
- 6<X_ 1 (lb)

0"_ C21 0X 2 4C21 0X

The last term on the right in each equation is the local heat

source, including all frequencies, produced by radiative ab-

sorption, emission, and scattering. Properties are assumed in-

dependent of temperature. The O_r(X, r)/OX is obtained in

terms of the instantaneous temperature distribution by using

the two-flux relations; these have provided accurate results in

previous steady-state m4 and transient TM analyses. With nL and

n2 assumed independent of frequency, the spectral two-flux

equations using the Milne-Eddington approximation are 12

aq,(x, r, v) _c,_
- (1 -- _2,_)[4n_eb(X, r, v)

OX

- G,(X, r, v)] 0 -- X < a (2a)

04r(X, "i', _') t<2_
- (1 -- 122_)[4n__eb(X, r, v)

OX 1 --

-- G2(X, r, _,)] ¢5 < X --< 1 (2b)

where Gt(X, _-, v) and G2(X, _', _') are related to 4,(X, r, v)

by

aG,(X, r, v)
- --3-_4,(X, r, v) 0 _X< 6 (3a)

OX o

OG2(X, r, v) K_ v

OX --3 _ 4,(X, r, v) 6 < X ----- 1 (3b)

The _ and G are related to the positive and negative radiative

fluxes in Fig. 1 by c_, = c_,+ - 47 and G = 2(47 -_ qT).

Boundary, Interface, and Initial Conditions

For a semitransparent material, radiation is absorbed within
the material interior and not at a surface, since the surface has

no thickness. Hence, the relations between conduction and

convection at the boundaries do not include radiative terms

at(X, r) x=o HiOX = --4N---'_ [t,._ -- t(O, r)] (4a)



SIEGEL 683

0t(X, _-) /-/2 [t(1, _-) - tg2]
_-Ixo, = -4-_

(4b)

At the internal interface, X = (3, there is continuity of temper-
ature and heat conduction

t(6--. _-) = t(6+, _-) (4c)

Ot(X, -r) Or(X, -c)
N, _ x=s- = N2 0X x=ti+ (4d)

The boundary conditions for radiation must include the ef-
fects of external and internal reflections at the outer surfaces

that are exposed to spectral fluxes qrl(V) and qr2(l:). The con-
ditions have been developed by considering the incident, re-
flected, and transmitted fluxes at a boundary '3

28 OGI(X. % v) x=o (5a)6,(0. T. v) = 4Rl4r,(v) + _ R2 OX

6.(I,_ _-, v)= 4Rsc_:(v). 2(13K2--.6)R6OG2(X'ox % v) x=, (5b)

At the interface between the two layers the relation between
reflected and transmitted fluxes gives _4

6.(_3,_',v)=R36,(&r,v)+. 3K_v28R406_(6.'r.V)OX x=. (6a)

There is a discontinuity in 6 at an interface, so that 62(6, _',

v) _e GI(& 7, v). The radiative flux, however, is continuous at
the internal interface, and so from Eq. (3)

6 O01(X, T, _) X=$$ -- 1 __ 6 062(X, _', v) x=8 (6b)K,_ OX K._ OX

Green's Function to Determine G(X, 7, v)

in a Two-Layer Composite

To find O_(X, "r)/OX for Eq. (1), the Gi(X, % v) are needed
for use in Eq. (2), which is then integrated over all v. Green's
functions are developed to obtain G_(X, _-, v) in terms of e_,(X,

_-, v). Equations (3a) and (3b) are differentiated in X, and
O(,r(X, ,'r, v)/OX is then eliminated from Eqs. (2a) and (2b). The
resulting differential equation for Gj(X, "r, 7.,) is

g_(X, _, v)

_C,2(_2, v)cosh e._._X + C-,.(_..., v)sinh e_X
= [Cs2(_2, v)cosh e2_X + C42(_2, v)sinh e._X

6<-X<_

_2<X_l
(Sb)

To obtain the coefficients Cu(_ j, v) to C4i(_, v), the gj(X. _,

v) in Eq. (8) must satisfy the following relations obtained from
the homogeneous forms of Eqs. (5a) and (5b):

26 Og,(X. v) x=o = 0
(9a)

g2(1, v) + 2(13 K2--v8) R6 Og2(X,ox 1.') x=, = 0
(9b)

By using Eqs. (8a) and (8b) in Eqs. (9a) and (9b) to evaluate

Cu(_, _) to C_.i(_j, _). the gj(X, _. v) reduce to

g_(X, _,,v)

_C2,(_,, v)(sinh e,vX + Pz,,e,_ cosh e,_X)

= LC4,(¢,, v)(sinh e,_X F_ cosh e,_X)

O<-X<_,

_,<X<-6
(10a)

g2(x, ,_, _)

_C.z(sc:. v)(sinh e2_X -- F2_ cosh e2_X)
= [C42(_:2, v)(sinh e2_X Fa_ cosh e2_X) sc2<X-- < 1

(10b)

where F,_ -------(Rs sinh e_.6 + P4_e,_ cosh et_)/(R3 cosh e,_6 +
P4_e,_ sinh el_6). F2_ _ cosh e2.6lsinh e2_6, and /;'_. _- (sinh

e2v + P6_e2_ cosh ez_)/(cosh ez_ + P6_e2_ sinh e2_).
The C2j(_, v) and C_(_j, v) in Eq. (10) are obtained by

applying the two conditions _ that g)(X, _j, v) is continuous at

X = _j, and that for increasing X, the Og_(X, _, v)/OX passes
through a discontinuity of --1 at each X = _. This yields the
relations for C21(_1, V) and C_(_,, v):

C2_(_:_, v)(sinh e,_ _:_ + P._e_ cosh e,_:a)

= C_,(_:,. v)(sinh e,_s e, -- F_ cosh e_,) (1 la)

C4_(_, v)e_[cosh e_, -- F_ sinh e,_:_)

-- C,_(_, v)e,v(cosh el_, + P2_e,_ sinh e,_)= --1
(llb)

O2Gs(X, _, v) e]_6:(X, r. v) = --4e]_n]eb(X, ,r, v)
OX 2

j = 1, 2 (7)

For convenience, the _- functional notation is omitted in the

following derivation. The homogeneous part of Eq. (7) is
satisfied by cosh(e_X) and sinh(e:_X), and so the Green's func-
tions have the form _

gl(X. _,. l:)

C,,(_,, v)cosh e,_X _ Cz,(_, v)sinh e,_X
---- LC31(_|, v)cosh e,_X + C41(_1, v)sinh e,_X

0 --<X < _i

_,<X<--6
(8a)

and for C_-2({_2,v) and C4-_(_z, v):

C-__(¢2, v)(sinh e._a -- F2_ cosh e2__)

= C__.(_:, v)(sinh e:_¢__ -- F3_ cosh ezra2)

C42(_2, v)e2_(cosh e___ -- F3_ sinh e2_z)

C:2(_. v)e:_(cosh e2_2 -- F2_ sinh e2_¢2) = --1

(12a)

(12b)

Equations (1 la) and (1 lb) are solved for C_,(_,, v) and C41(_1,

v), and Eqs. (12a) and (12b) for C2z(_2, v) and C42(_:_, v). After
substituting into Eqs. (10a) and (10b), the final Green's func-
tions are

[[(tan_h_ e,_ -e_ e2,e,_)coshe,_¢_,] {Rs tanh[e,_(6 - Xx)] + P4_e,_}cosh[e,_(6 -- X)]

_L Denom,_ _l

gt(X, {_, v) = [ F{Rs tanh[e,_(6 -- _,)] + P4_e,_}cosh[ea_(6 -- _1)]] [(tanh e,vX _ P._e,_)cosh e,_X]

L L Denom,_ _]

(13a)

#,<X<-6
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where

[ [cosh[e2_(_2 --

ga(X,_]2, V) [[{tanh[e2.(1 --

8)]] {tanh[ezv(1 -- X)] + P6_e2v}cosh[e2.(1 - X)]

_:2)1 Denom2_+ P6_ez_}cosh[e2_(1 -- _)]] cosh[e2_(X -- 8)1

Denom_ = el_{[(R3 + P2_P4_e_)tanh e_v6

+ e_(P4_ + P2_R3)]cosh eL_8}

Denom2. = e2_{ 1 + e2.P6v tanh[e2v(1 - 8)]}

× cosh[e2v(1 -- 3)]

The gj(X, _, v) in Eq. (13) are used to account for the non-

homogeneous term containing eo(X, % v) in Eq. (7) when com-
puting Gj(X, ":, v) at each timeduring the transient. To ob-

tain the complete solution for G:(X, -r, v), the homogeneous

solution is needed for Eq. (7). This has the form Ghj(X, 1/) =

Els_ sinh ei_X + E2j_ cosh ei_X. The boundary conditions in

Eqs. (5) and (6) are applied and the result is four simultaneous

equations for the Eu_ and E2s. coefficients:

P2_el.Elav -- E21_ = --4Rlqrl(U) (14a)

Klv \ Klv

e2v(!2 ¢_)cosh e2v_] El2v
1£2 v

- ---- sinh e2_8 E22_ = --C_ (14b)
K2.

(R3 sinh e_8 + P4_el_ cosh e_,5)En_

+ (R3 cosh e_fl_ + P4.e_ sinh e_6)E2L_

-- (sinh e2._)E12v -- (cosh e2_)E2z_ = C2_ (14c)

(sinh e2_ + Pa_e2_ cosh e2DEL2.

+ (cosh e.__ + Pa_e.__ sinh e2_)E2.__ = 4Rscl_2(v) (14d)

where by using the Green's functions

Ci_ = -4R3e31_n _

fo6 (tanh et_l + P2_e_)cosh e_t
X--

Kt. Denoml
e_(_l, v) d_,

C.. = 4e?%n_

f_ {tanh[ez.(1 -- _:2)] + P6.ez_}cosh[e2_(1 -- __.)]
)< L Oenom2_

× e_(_2, v) d_2

G._(X. -r. v) = G,a(X, -r, v)

2 2 _1
+ 4e2_n2 g2(X, -r, _2, v)e_(_., -r, v) d_z

(13b)

(15b)

The forms for two spectral bands can be written in the same

way as in Ref. 3. where a spectral Green's function analysis

is given for a single layer.

Numerical Solution

Starting with a specified t(X, 0), the blackbody function eb(X,

0, v) is known. The Green's functions are used in Eqs. (15a)

and (15b) to obtain G_(X, 0, v) and G2(X, 0, v), and the O

_,(X, 0, v)/OX is then evaluated from Eq. (2). This spectral

quantity is integrated over all v, so that it can be used in the

energy equation that involves total energy quantities (the re-

suits given later are for two spectral bands with the same cutoff

frequency in both layers). Using Eq. (1), fiX, -r) is integrated

forward one time increment using the finite difference relations

that follow. Then the new temperature distribution is used with
the Green's functions to obtain Gj(X, A'r, v) and O_,(X, A'r, v)/

OX. The O_,(X, A_', v)/OX is integrated over all v and is used

in Eq. (1) to continue on to obtain fiX, -r) at the next time step.

From Eqs. (la) and (lb), the following implicit finite dif-

ference algorithms are used at the interior points of a uniform

grid to advance the temperature distributions each A_- in each

layer:

2N, A_-] t(X, ": + A_-)N_A-r t(X-- AX, _-+ A_') + 1 + (AX)2_ l(AX)-"

N_A-r t(X + AX, "r + A-r) = t(X, "0 -- A.r 0_

(AN) 2 4 cgXlx..

0 < X < 6 (16a)

N2A-r t(X -- AX, r + At) + 1 q c2-_--_S j t(X, -r + A_')c_(AX)-"

N2A-r A-r 04,

c_,(-AX)_ t(X + AX, _" + A-r) = t(X, "r) 4c2, -_ x..

< X < 1 (16b)

For the boundary points X = 0 and 1, Eq. (16) is applied,

and the t(-AX, q- + A_-) and t(1 + AX, _- + A_-) that appear

are eliminated by using the boundary conditions Eqs. (4a) and

(4b), expressed as

By adding G,0(X, v) to the nonhomogeneous solutions obtained

by using g_(X, _, v), the general spectral solution of Eq. (7) in

each layer at each time is

G,(X. -r, v) = G,,,(X, -r, v)

+ 4e_n_ g,(X, ¢, £t, v)eo(/_. -r, v) dbe, (15a)

t(AX, ": + A-r) -- t(--AX, ": + A_,)

Hi

2AX

- --- [t_, - t(0, -r + A-r)]
4N_

t(1 + AX, -r + A-r) -- t(1 - AX, -r + A_-)

/42

2AX

- --- [t(1, _- + A_-) -- tg2]
4N2

i,
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Thisyieldsthefinitedifference relations at X = 0 and 1 as

2NiA'r HiA'r]1 + _ + 2AX_[ t(0, _'+ A_-)

2N, A7 AT0_ HiAq
flAX, "r + A_-) = t(0, _-) -- 40X o., + _ tg,

(17a)

2N2Az [ 2N2A'r + H2A'r ]cot(_X)2 t(1 -- AX. _-+ A_r) + 1 + c2L(AX)-------__ 2c2_AX_]

X t(1, T + AT) = t(1, _r) A1- 0_r l., HoA7+ =-=7-w t,:
4c2_ OX ZCzlZaa

(17b)

The condition at the internal interface, Eq. (4d), is written

by using three-point derivatives, and Eq. (4c) is substituted to

give

NI

2AX
-- [t(6 -- 2AX, -c) -- 4t(6 -- AX. _-) + 3t(6, _-)]

N2
2AX

- -- [--t(6 + 2AX. _-) + 4t(6 + AX. _-) -- 3t(6. _-)]

Equation (16) is written for t at X + AX and X -- AX, and
these relations are used to eliminate the nontridiagonal ele-

ments t(6 - 2AX, _-) and t(6 + 2AX, _'). The result is a tri-

diagonal finite difference expression at the internal interface

A_ -- 2N_ t(6 -- AX, -c+ AT) + 2(N_ + N2)t(& -r+ A-c)

[_._,(AX;" ]+ l' _" 7 2N2 t(6 + AX, _" + AT")

(AXy
- [t(_ - AX, _-) + c__,t(6 + AX, T)]Az

(AX): (00, 0_r ) (18)

The t(X, _-) is advanced to the next A_-using Eqs. (16-18)

solved as a tridiagonal matrix using the algorithm in Ref. 16.

As described in Ref. 4, overall energy balances were checked

at each time step by using the calculated temperature distri-

butions to evaluate the amounts contributed by radiation, con-

vection, and internal energy storage. For the grid sizes used,

the overall energy balance was satisfied within 0.5% through-

out the transient calculations. After checking various grid

sizes, it was found that 81 evenly spaced points across each

layer gave accurate grid-independent solutions for Kj, < 3 in

each layer. For Kj_ > 3, 101 points were used, which gave

accurate solutions for Kj_ <: 10. A time increment of A_- =

0.0025 provided stable and time-accurate solutions for the re-

sults calculated here, as validated by comparisons with some

previous numerical solutions using the exact radiative transfer
relations.

Results and Discussion

The objective of the analysis was to develop a convenient

and accurate method for obtaining transient temperature dis-

tributions in a two-layer semitransparent composite with spec-

tral radiation properties, isotropic scattering, and differing re-

fractive indices in each layer. The composite is subjected to
external convection and radiation on both sides. A Green's

function solution was derived for the spectral two-flux radia-

tive transfer equations in two layers, and for the results given

here. the solution was applied in two spectral bands with the

same cutoff frequency in both layers. By summing over the
two bands, the Green's function is used to obtain the radiative

energy source term in the transient energy equation at each

time step. The energy equation was solved with an implicit

finite difference method that includes convective boundary

conditions, and the required temperature and heat conduction
conditions at the internal interface. Some of the transient re-

suits that will be presented are to verify the method for spectral

calculations. This is done by comparing transient temperatures

with previous spectral steady-state and transient results ob-

tained or verified with the exact radiative transfer equations.

The other figures that follow illustrate the variety of transient

results with spectral effects that can be obtained with the pres-

ent combined analytical and computational procedure.

The transient temperatures given here begin from a uniform

temperature distribution t(X, 0) = 1, although the solution ap-

plies for a general distribution t(X, 0). For a partial validation

of the present method, the solid lines in Fig. 2 are transient

results for a two-band symmetric case using the same param-

eters as the transient solution in Fig. 6c of Ref. 3. The two-

band spectral optical thicknesses of the layers in order of in-

creasing frequency are xt_ = K__ = 5 and 0.05. For _- > 0, the

composite is exposed on both sides to a high-temperature gas

at Tgt = Tg2 = 4T, and there is large convective heating on

both sides. The surroundings remain at T,_ = Ts2 = T_, so that

as the temperatures rise, radiative cooling occurs from within

the composite interior. Radiative cooling has a strong effect,

and the transient interior temperatures are always considerably

below the surface temperatures. At steady state, the interior

temperatures in the central region of the composite are close

to the uniform temperature for a composite that is opaque. The

present results duplicated those in Ref. 3, where a single spec-

tral layer was analyzed, and additional calculations were then

made to illustrate the effect of heat capacity in the second layer

of a two-layer composite. The dashed lines in Fig. 2 illustrate

how increased heat capacity can delay the transient response.

Heat capacity, however, does not alter the steady-state tem-

perature distribution.

Figure 3 provides a comparison with a numerical solution

of the exact transfer equations for steady state given in Fig. 3

of Ref. 14. The transient results at large time agree very well

with this steady-state solution, which is for a two-layer corn-
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posite with each layer having two spectral bands. For these

results, the composite is heated by blackbody radiation at X =

0 with temperature T,_ = 1.2T_. As the surface temperature rises

at X = 0, convective cooling occurs, since the gas temperature

remains at the initial temperature Tg_ = T_. There is stronger

cooling by both radiation and convection at X = 1, where there

are lower blackbody surroundings and gas temperatures, T,z =

T,.2 = 0.25T, For comparison, the steady-state solution is
shown (dot-dashed line) for a composite that is opaque, and

so radiation exchange occurs only at the external surfaces, and

there is only heat conduction within the interior. The transient

solution has large internal radiation transfer and, at steady

state, is considerably different from the opaque result.

After the solution method was verified in Figs. 2 and 3, and

by some additional comparisons, it was used to examine a few
transient effects to illustrate how the solution can be applied;

these results are shown in Figs. 4-7. A few steady-state so-

lutions are also shown for an opaque composite, and it is ev-

ident that in these examples, considerable radiation effects are

present.
In Fig. 4, the effect of adding scattering to the first layer is

illustrated as a possible method to protect the second layer

from external radiant heating. For the solid lines, the two-band

spectral optical thicknesses of the first layer in order of in-

creasing frequency are K_, = 2 and 0.1. For the dashed lines,

a uniform amount of scattering has been added to both bands

so t<_ = 6.9 and 5. The first layer has thus been made more

opaque, and it tends to shield the second layer from the radi-

ation incident at X = 0; this significantly reduces the temper-

atures in the second layer. During the transient, however, the

maximum temperature is increased in the first layer. At steady

state, the dashed results approach somewhat more the temper-

ature distribution for an opaque composite.

To illustrate the importance of spectral effects, the results

without scattering in Fig. 4- are compared in Fig. 5 with tem-

peratures when each layer is gray. In each layer the larger of

the two-band optical thicknesses in Fig. 4 was used, and so,

in Fig. 5, Kt, = 2 and K_, = 5 for all v. The bands have been

eliminated that are more transparent, so that radiation incident
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and A,jT_ = 4000 /tm K; solid lines, l'_v = l'_z_ = 0 with K_, = 2
and 0.1; dashed lines, 1"_ = 0.7101 and l_ = 0.98 with Kz_ = 6.9
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at X = 0 is not transmitted as readily into the composite. In-

cident radiation is absorbed strongly in the region at small X.

The result is increased maximum temperatures that are closer

to X = 0, and reduced temperatures in the second layer. By

comparison with the dot-dashed line in Fig. 4 it is evident

that the optical thicknesses in Fig. 5 are significantly smaller
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than those required for the composite to behave like an opaque
material.

The results in Fig. 6 illustrate the effect of heat conduction
in the first layer, which is the layer adjacent to the radiant heat
addition. Except for the Nj values, the parameters are the same
as for the solid lines in Fig. 4. For the solid lines, N_ = N_ =
0.1, as compared with N_ = N2 = 0.015 in Fig. 4. The increased

Nj have a substantial effect in reducing the temperature gra-
dients near the external boundaries, and the transient distri-

butions are more uniform as expected. The dashed and dot-

dashed curves show the effect of increasing and decreasing the

conductivity of the first layer. An increase to N_ = 1 removes
practically all of the temperature peak near X = 0. Decreasing
the conductivity to N_ = 0.01 produces a substantial tempera-

ture peak in the first layer and a large gradient near X = 0
throughout the transient.

As a final illustrative example, Fig. 7 examines the effect of
removing the convective cooling at the X = 0 boundary. The
solid lines are the same as the solid lines in Fig. 6, where Hi

= 4; for the dashed lines, H_ = 0. As expected, removing con-
vective cooling at X = 0 raises the temperatures near this
boundary throughout the transient, and at X = 0 the tempera-
ture distributions have a zero derivative. At steady state, the

entire temperature profile is raised because of the reduced
cooling on one side. The straight lines for an opaque composite
at steady state with a uniform thermal conductivity illustrate,
as in Fig. 4, that there are substantial internal radiation effects.

Conclusions

A combined analytical and numerical method was developed
to obtain transient temperatures in a composite of two semi-

transparent layers with spectral radiation properties and with
isotropic scattering. A Green's function solution was derived
for the spectral two-flux equations in the composite. Summing
over all frequencies provides the local radiative heat source.
This was combined with an implicit numerical solution of the

transient energy equation. The analysis accounts for heat con-
duction, and internal radiant absorption, emission, and isotro-

pic scattering. An advantage of the method is that isotropic
scattering is included without additional complexity. Starting
from an initial temperature distribution, the layer is heated or
cooled by external radiation and convection. The resulting

steady-state and transient temperature distributions were veri-
fied by comparing with results where the radiative energy
source was numerically evaluated from the exact spectral ra-
diative transfer equations. Illustrative examples demonstrate
how the method can be used to examine various heat transfer

effects, and they show the comparison of transient spectral and
gray calculations. An example is shown where the addition of
scattering to a layer is used to shield a second layer from
sudden exposure to radiative heating. The effects of changing
the heat conductivity in part of the composite and removing

the convective cooling at one boundary are also illustrated.
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